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ABSTRACT

The authors present herein an analysis of a single-Doppler velocity retrieval (SDVR) technique whereby the
unobserved wind components are determined from single-Doppler radar data. The analysis is designed to provide
information about the behavior and/or sensitivity of the SDVR scheme as a function of various internal and
external parameters as well as about observational errors and weights.

Results presented for retrieval of both the mean and local flow indicate that the SDVR breaks down if the
reflectivity gradient vanishes or if a reflectivity isoline is locally perpendicular to the radar beam. In the absence
of reflectivity or radial velocity errors, the mean flow solution is independent of the integration area, the radar
location, the signal wavenumber, and the weights. Given perfect radial wind information, error in the reflectivity
field degrades the solution. Contrary to the error-free solution, the solution with error depends on the integration
area.

Error statistics indicate that radial wind information alone is not sufficient to retrieve the local wind. Reduced
error norms reveal that an optimal (i.e., reduced error norms) integration area exists that is dependent upon the
length of time between radar volume scans, suggesting that the velocity field is not stationary (as was assumed)
over these scans.

1. Introduction

The demands of convective-scale research will likely
necessitate the use of data from sources such as Doppler
radars, surface mesonet stations, and wind profilers.
Doppler radar provides the most comprehensive obser-
vations in terms of space and time resolution, but, un-
fortunately, a single radar measures only the radial wind
component (and reflectivity) in a three-dimensional (3D)
volume. The paucity of high-resolution 3D measure-
ments of the vector wind field is potentially problematic
in the context of convective-scale initialization and pre-
diction. For example, in the research community, some
forward data assimilation techniques employ a ther-
modynamic recovery procedure that retrieves the pres-
sure and buoyancy fields from the equations of motion
via a least squares method that yields a Poisson equation
for pressure (Gal-Chen 1978). It has been shown, how-
ever, that in order to arrive at accurate estimates of the
pressure and buoyancy fields, the Gal-Chen technique
requires knowledge of the three-dimensional wind and
its time tendency (Hane et al. 1981; Crook 1994). To
complicate matters further, the radial wind field is not
known everywhere, and large data voids frequently exist
within an analysis volume.
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The challenge to produce a dynamically consistent
and complete set of initial conditions suitable for a nu-
merical forecast on the storm scale has led to the de-
velopment of techniques known as single-Doppler ve-
locity retrieval (SDVR). Employed as an independent
algorithm, SDVR also has the potential to improve both
nowcasting and hazard warning. Although SDVR tech-
niques vary in complexity, from simple conservation
principles to the use of full dynamic constraints, each
is employed to assist in the recovery of the cross-beam
(azimuthal) and vertical (polar) wind components. For
example, Shapiro et al. (1995) apply a two-scalar con-
servation technique whereby reflectivity and a second
derived scalar field are used to recover the 3D boundary
layer wind field. Weygandt et al. (1995) extend the Sha-
piro technique to a deep-convective dataset. Using a
variational approach whereby a single Cartesian wind
component was assumed known, Liou et al. (1991) ad-
just (retrieve) the other two model components subject
to a constraint that minimizes the divergence of the
adjusted plus the observed winds. Xu et al. (1995) utilize
the adjoint technique to retrieve microburst winds from
single-Doppler data. Sun et al. (1991) also employ the
adjoint methodology to retrieve both wind and temper-
ature fields using a single wind component from model-
simulated data. Her method was then adapted to directly
incorporate simulated radial velocity information in-
stead of a single Cartesian component (Sun 1994). Tuttle
and Foote (1990) retrieve the two-dimensional (2D)
boundary layer flow from a single Doppler by utilizing
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a correlation technique known as tracking radar echoes
by correlation (TREC). Crook and Tuttle (1994) also
use the TREC method to determine the boundary layer
winds in association with three observed gust front
cases.

This paper focuses on a particular SDVR technique
that utilizes a least squares method proposed by Gal-
Chen and Zhang (1993, hereafter GZ). The simple na-
ture of the GZ retrieval allows for an analytic analysis
that is not easily obtainable with other SDVR tech-
niques. The advantage of such an analysis lies in its
potential to provide a priori information about the be-
havior and/or sensitivity of the scheme as a function of
various internal and external parameters as well as the
sensitivity of the scheme to the observations themselves
(e.g., weights, radius of influence, errors). Albeit some-
what idealized, the work presented here has been de-
signed to provide insight with respect to the application
of the GZ scheme to real data.

The GZ algorithm, discussed briefly in section 2, re-
trieves the 3D wind field from multiple time levels of
radar data by assuming that, in the absence of source
terms (e.g., precipitation fallout, coalescence, evapo-
ration, etc.), reflectivity is conserved and that the ve-
locity field is stationary in a frame of reference that
moves with the mean translation speed of the reflectivity
field. The velocity vectors obtained from the retrieval
satisfy, in a least squares sense, the Eulerian equation
for reflectivity conservation and a second weak con-
straint whereby their projection in the direction of the
radial wind is approximately equal to that of the ob-
served radial wind. In sections 3 and 4, we present the
results of a constant wind retrieval with and without
error in the input (simulated) reflectivity field. Section
5 details a local flow retrieval in which the idealized
zonal velocity varies as a linear function of x. A sum-
mary and conclusions are presented in section 6.

2. Overview of the SDVR technique

Instead of enforcing only reflectivity (Z) conservation
exactly (e.g., Qiu and Xu 1992), we also enforce the
geometric constraint relating the radial velocity to the
Cartesian velocity components in a least squares sense
(as weak constraints) by minimizing the functional,

2]Z ]Z ]Z ]Z
J [ m 1 u 1 y 1 (w 1 W )E t5 [ ]]t ]x ]y ]zx , t

x 2 x y 2 y0 01 y 2 u 2 yr[ r r

2z 2 z02 (w 1 W ) dx dt, (1)t 6]r

where dx is a 2D (x, y) increment; dt is the time incre-
ment; u, y , and w are the advection velocities; x, y, and
z are the coordinates of the observations; Wt is the ter-

minal velocity of the precipitation particles; y r is the
radial velocity; x0, y0, and z0 are the x, y, and z coor-
dinates of the radar; and r is the radar-to-gridpoint dis-
tance given by

r 5 [(x 2 x0)2 1 (y 2 y0)2 1 (z 2 z0)2]1/2. (2)

Note that all quantities in (1) are given in a fixed ref-
erence frame. A detailed description of the derivation
of (1) in a moving reference frame is given in Zhang
and Gal-Chen (1996, hereafter GZ96). The weight m is
given as a ratio of the reflectivity-to-radial velocity
weights, both of which are determined from their inverse
variances, that is,

21/(Z 2 Z ) f (Z ) dx dtE t t t
2 x , t1/s zm 5 5 , (3)
21/s yr 21/(y 2 y ) f (y ) dx dtE r r r

x , t

where the overbar denotes a mean value, the subscript
t indicates a derivative with respect to time, and f (Zt)
and f (y r) represent probability density functions. The
weight m is chosen so as to ensure that each constraint
in (1) has the same order of magnitude, Z t and y r are
taken to be zero, and f (Zt) and f (y r) are set to one.

Equation (1) is minimized by differentiating J with
respect to the three unknowns—u, y , and w—and setting
the resulting equation equal to zero. This results in a
system of three linear equations that can be written in
matrix form as

     a a a u b11 12 13 1     
a a a y 5 b . (4)     21 22 23 2     
a a a w b31 32 33 3     

In practice, the coefficients aij are determined from the
observed reflectivity and radial velocity fields,

2 2
]Z x

a 5 m 1 dx dt,11 E 5 1 2 1 2 6]x rx , t

]Z ]Z xy
a 5 a 5 m 1 dx dt,12 21 E 25 6]x ]y rx , t

2 2
]Z y

a 5 m 1 dx dt,22 E 5 1 2 1 2 6]y rx , t

]Z ]Z xz
a 5 a 5 m 1 dx dt,13 31 E 25 6]x ]z rx , t

2 2
]Z z

a 5 m 1 dx dt, and33 E 5 1 2 1 2 6]z rx , t

]Z ]Z yz
a 5 a 5 m 1 dx dt, (5)23 32 E 25 6]y ]z rx , t
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FIG. 1. Horizontal cross section indicating the relationship between
the radar location (x0, y0), grid point (x, y), and the transformed
variables (X, Y ).

where we have neglected the terminal velocity and as-
sumed that the radar is located at the grid origin (0, 0,
0). The right-hand-side forcing is given by,

]Z ]Z x
b 5 2m 1 y dx dt,1 E r1 2]x ]t rx , t

]Z ]Z y
b 5 2m 1 y dx dt, and2 E r1 2]y ]t rx , t

]Z ]Z z
b 5 2m 1 y dx dt. (6)3 E r1 2]z ]t rx , t

It is important to point out that, in the GZ96 tech-
nique, the mean flow (used to define the motion of the
retrieval reference frame) is obtained by integrating the
coefficients given in (5) and (6) over an entire volume
(or as a function of height by integrating over all re-
flectivity and radial wind data at a given level), while
the perturbation flow is obtained by integrating (5) and
(6) over a local horizontal area. The total flow is then
obtained by adding the perturbation flow onto the mean.
In either case, the 3D winds can be retrieved by inverting
(4), for example, by using Gaussian elimination.

Although we do not seek a solution in a moving ref-
erence frame when deriving the following analytic so-
lutions, it should be used when GZ is applied to real
data. In that case, the fixed frame estimate of the re-
flectivity time derivative may contain significant error
resulting from aliasing due to the discrete nature of the
finite difference formulation. For example, if a radar
samples the reflectivity every 200 s, then a mean flow
velocity as little as 1 m s21 on a 200-m grid can lead
to aliasing. Because the GZ mean flow velocities are
retrieved by minimizing the variance in the reflectivity
time derivative, the impact of retrieval errors due to
aliasing can be mitigated by performing the retrieval in
the moving frame. Additionally, the velocity stationarity
assumption is least violated in a frame of reference mov-
ing with the principal features of interest. To define a
moving reference frame, however, one must first retrieve
the mean flow, and herein lies the impetus for this work.
The experiments presented in this paper, which include
an error impact analysis on the mean flow only, are
primarily designed to examine the sensitivities of the
mean flow GZ retrieval.

3. Mean flow retrieval with perfect observations

The GZ scheme given by (1) can be applied to retrieve
the mean or total flow. In practice, one first obtains the
mean flow, which is then used to define a moving ref-
erence frame and to solve for the perturbation flow ve-
locity in the moving frame. The total flow is then ob-
tained by adding the mean flow onto the perturbation
velocity (GZ96). Because an accurate retrieval of the
total flow depends upon a quality estimate of the mean

flow, we will first examine the sensitivity of the GZ
scheme with respect to an analytic mean flow solution.
It is important to point out that estimates of the mean
translation speed via (1) may vary depending on the
specified domain size R. Although we vary R as well
as the domain location relative to the radar (as shown
in Fig. 1), the results presented in this section remain
that of a mean flow retrieval in which just one pair of
mean wind values (U, V) is obtained.

We consider the simple one-dimensional (1D) case of
a sinusoidal reflectivity pattern of the form

Z(x, t) 5 a sin[k(x 2 Ut)] 1 «(x), (7)

where a and k are the signal amplitude and wavenumber,
respectively, and U is the mean zonal velocity com-
ponent of the true wind v 5 U i. Because observations
are generally imperfect, we introduce a simple error
term, «(x), defined as

«(x) 5 b sin(mx), (8)

where b and m are the noise amplitude and wavenumber,
respectively. We choose a 5 10 dBZ, lx(2p/k) 5 2500
m, and « 5 0 so as to be representative of optically
clear convective-scale boundary layer values. Note that
(7) will not satisfy the 1D mean flow reflectivity con-
servation equation,

]Z ]Z
1 U 5 0, (9)

]t ]x

unless «(x) 5 0.
Initially assuming that (8) is zero (i.e., no error), we

substitute (7) into (5) and (6) and integrate over (x, y, t),
with z 5 0 and m assumed to be constant (see appendix
A for the coefficients). Due to the simple nature of our
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assumed analytic solution, (4) reduces to two equations
in two unknowns, that is,

r ra u 1 a y 5 Ua and11 12 11

r ra u 1 a y 5 Ua , (10)12 22 12

where ur and y r are the (unknown) Cartesian velocities
to be retrieved. We reduce (10) to one equation and one
unknown, that is,

a11 ra 2 a y 5 0. (11)12 221 2a12

There is only one solution to (11) as the coefficients
aij are given to us from the observations. If the term
enclosed by parentheses is not zero, then y r must be
equal to zero and we arrive at the desired mean flow
solution, ur 5 U. If the term enclosed by parentheses
is zero or in practice becomes too small, then y r blows
up; that is, the solution becomes singular. This case
interests us as it will shed light on the conditions under
which the GZ scheme will fail to recover the mean flow.

If the parenthetical term is zero, then we must have

5 a11a22.2a12 (12)

To simplify the analysis, we evaluate the coefficients
a11 and a22 at a single point in the observed flow field.
Applying (5) in (12) (with ]Z/]y 5 0), we obtain

2 22 2 2x y y ]Z x
5 m 1 . (13)

4 2 1 2 1 2[ ]r r ]x r

Therefore, (12) is satisfied exactly (and the solution
breaks down) if ]Z/]x 5 0 or y 5 0. The former implies
that one cannot retrieve the mean flow in regions where
the reflectivity gradient vanishes.

This problem also appears in the case of 2D flow with
reflectivity conservation and the radial wind equation
(i.e., ry r 1 ux 1 yy 1 wz 5 0) applied as strong con-
straints. The reflectivity conservation and radial wind
equations form a system of two equations in two un-
knowns and therefore can be solved directly, yielding
the following:

yZ 1 ry Z xZ 1 ry Zt r y t r xr ru 5 and y 5 , (14)
xZ 2 yZ xZ 2 yZy x y x

where the subscripts x, y, and t denote derivatives with
respect to space (x, y) and time t. The denominator in
(14), which is the scalar triple product k · (r 3 =Z),
indicates that a singularity will occur if the reflectivity
gradient vanishes or if a reflectivity isoline is locally
perpendicular to the radar beam. These problems are
similar to those encountered by other advective retrieval
techniques that employ scalar conservation relationships
(e.g., Shapiro et al. 1995). They can, however, be mit-
igated by expanding the integration domain in space
and by using information over multiple time levels (e.g.,
Qiu and Xu 1992). Outside of these regions, the mean
flow can be retrieved and in the absence of reflectivity

or radial velocity error, the GZ mean flow solution is
independent of the area of integration R, radar location
(x0, y0), signal wavenumber k, and weight m.

4. Mean flow retrieval with error

a. Theory

For the idealized 1D problem just described in which
error-free data were assumed, regions where ]Z /]x van-
ish correspond to those where ]Z /]t vanish. Unfortu-
nately, this will not generally be the case as real data
typically contain error. Because errors associated with
the reflectivity conservation constraint will generally be
much larger than those associated with the radial wind
constraint, tests in which the radial wind error is zero
are both interesting and legitimate. In this section, we
consider the impact of reflectivity field error on the mean
flow retrieval presented above.

When (8) is nonzero, the numerical values of a11 and
b1 must be modified from those in the previous section
to allow for the presence of error. Because of the ad-
ditional terms, (9) is no longer satisfied. Each of these
coefficients has additional terms that arise from the x
gradient in Z, and for a11 we have the addition of two
terms, that is,

2 2
]Z ]Z ]«

5 11 2 1 ) 2]x ]x ]x
«50

2 2
]Z ]« ]Z ]«

5 1 2 1 , (15)1 ) 2 ) 1 2]x ]x ]x ]x
«50 «50

where « 5 0 indicates the evaluation of (7) with «(x)
5 0. Only one additional term is needed for b1, that is,

]Z ]Z ]Z ]Z ]Z ]«
5 1 . (16)1 2 1 ) 2]x ]t ]t ]x ]t ]x

«50

Substituting the analytic value for Z with error « and
integrating over space and time yields a modified a11

and b1 [see (B1) and (B2) in appendix B for more de-
tails]. Because the error term is a function of x only,
the remaining coefficients do not change. Note that the
mean flow solution now depends on the error amplitude
b and wavenumber m.

As discussed previously, if « 5 0 and the x gradient
of Z does not vanish, we are guaranteed to retrieve the
mean flow exactly even when using a single point in-
stead of an area average provided that (r 3 =Z) ± 0.
However, even if the latter holds, the inclusion of an
error term, as specified by (8), yields retrieved mean
flow velocities that can vary from the true solution. For
example, via Gaussian elimination, (4) yields

ry 5 m(« 2 U« )/d,b a1 11
(17a)

where and denote the error terms given in ap-« «b a1 11
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FIG. 2. Log-linear graph of the mean flow with error analytic so-
lution to GZ. Each curve represents the MVE (domain averaged over
a 40 km 3 40 km domain) for a series of experiments as a function
of m, for varying noise wavelengths (lm) of 628 m (solid curve),
3142 m (solid curve with circles), and 6283 m (dashed curve). All
other parameters are fixed, including mean flow, U 5 20 m s21, signal-
to-noise amplitude, a/b 5 2.0 (the equivalent of 50% amplitude
error), t 5 100 s, R 5 1000 m, and signal wavelength lx 5 2500 m.

pendix B and d is a combination of the coefficients aij

and weight m given by

a22d 5 a 2 {m[a (Z ) 1 « ] 1 a (y )}. (17b)12 11 a 11 r11a12

The coefficient a11 in (17b) has been partitioned with
respect to contributions from the reflectivity Z and radial
wind y r equations [i.e., the first and second terms of the
a11 integrand (5), respectively]. The impact of this error
term on the retrieved wind will depend on the signal-
to-noise amplitude and wavelength (see section 4b).
Equation (17a) indicates that, in the presence of reflec-
tivity error, a judicious choice of weights can mitigate
(or remove) these errors. Here, setting m 5 0 would
produce the correct retrieval (i.e., ur 5 U and y r 5 0).
Hence, given perfect radial velocity information, any
error (no matter how slight) in the reflectivity field de-
grades the mean flow solution. Under these circum-
stances, the retrieval performs better without any re-
flectivity information.

For the case where we have perfect reflectivity and
imperfect radial winds, the error terms are not coupled
to the weights as in (17a) and (17b). For example, if
we add an error term onto the radial wind in a manner
similar to that for the reflectivity as specified by (7),
that is, y r 5 y r 1 «(x), we have

x a y11«(x) dx dt 2 «(x) dx dtE E[ ] [ ]r a r12x , t x , t
ry 5 , (18)

d9

where d9 is given by (17b) with 5 0 and «(x) is an«a11

error term. In the limit in which m approaches infinity
(i.e., the reflectivity constraint is given increasing
weight), (18) reduces to

y
«(x) dx dtE [ ]rx , t

ry 5 . (19)
a22

Consequently, y r does not approach zero unless «(x)
approaches zero or a22 k ∫ {«(x)y/r}.

b. Results

Figure 2 shows the mean flow analytic retrieval for
a series of experiments (of varying weights m) in a 40
km 3 40 km domain with mean flow U 5 20 m s21,
noise amplitude b 5 5.0 dBZ (the equivalent of 50%
amplitude error as the signal amplitude a is set to 10
dBZ), t 5 100 s, R 5 1000 m, and the signal wavelength
lx 5 2500 m. These values were selected to facilitate
comparison with the error-free mean flow retrieval in
section 3. The three curves represent mean vector error
as a function of m for noise wavelengths (lm 5 2p/m)
ranging from less than that of the signal (628 m) to
greater than that of the signal (3142 and 6283 m). We

retrieve the wind over a given region in the x–y plane
where x and y are confined to be greater than zero with
respect to the radar. At each point we calculate the vector
error and then sum over all the points to obtain the mean
vector error (MVE) using

1/2ny nx1
r 2 r 2MVE 5 (u 2 U ) 1 (y 2 V ) , (20)O O i , j i , j[ ]N j51 i51

where N (5nx 3 ny) is the total number of points (1681)
and nx and ny are the number of points in the x and y
directions, respectively. A perfect retrieval (i.e., MVE
5 0.0) implies that 5 U and 5 0 at each of theser ru yi,j i,j

points. Regardless of the choice of lm, as m approaches
zero, that is, as the reflectivity equation in (1) is given
less weight, we obtain the exact solution (i.e., the MVE
approaches zero) for the retrieved mean flow (U 5 20
m s21, V 5 0.0 m s21). For the case of the constant
wind, in the presence of perfect radial wind information
and a reflectivity field containing error, one should omit
the reflectivity constraint altogether, as (17a) above sug-
gests.

Except for values of weights near m 5 0, where the
MVE approaches zero, the MVE values are slowly vary-
ing for a broad selection of weights (recall Fig. 2 is a
log-linear plot). Estimates of the weights determined
from (3) are typically on the order of 103 m2 dBZ22 or
greater and consequently fall outside of the region where
the MVE values increase steeply as a function of m.
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FIG. 3. Mean flow with error analytic solution to GZ. Each dot on
the curve represents the domain MVE as a function of the integration
area R for fixed U 5 20 m s21, a/b 5 5.0 (the equivalent of 20%
amplitude error), t 5 100 s, and lx 5 2500 m. Here, m is determined
from Eq. (3).

FIG. 4. Mean flow with error analytic solution to GZ. Contours of
domain MVE as a function of lx and lm. Here, R is fixed at 40 km,
U 5 20 m s21, a/b 5 5.0, and t 5 100 s. Here, m is determined
from Eq. (3). The contour interval is 5 m s21.

Thus, even an order of magnitude change in m has little
impact on the MVE. This suggests that there will be
little sensitivity to the choice of weights.

Because the error amplitude is fixed at 50% for each
curve in Fig. 2, the large differences in the MVE can
be attributed directly to the noise wavelength lm. The
MVE approaches values twice that of the mean flow for
lm 5 628 m, indicating that short wavelength noise
dominates the solution as rapidly varying reflectivity
gradients overwhelm the more slowly varying gradients
of the signal. As the wavelength of the noise increases
to values larger than that of the signal, the MVE values
decrease significantly (from 200% to 10%). The MVE
can be reduced further by choosing R as large as possible
(e.g., the entire domain)—a potentially desirable result
that suggests one can mitigate the impact of observa-
tional errors by utilizing a larger horizontal domain.

This is demonstrated in Fig. 3, which shows the MVE
for a series of experiments in which the signal and noise
wavelengths and amplitudes are held fixed. As R ap-
proaches 40 km, the MVE decreases from 18 m s21 to
less than 2 m s21. This result is in direct contrast with
the error-free mean flow solution, which was indepen-
dent of R. The integration over a larger area effectively
smoothes the noise by summing over a greater number
of sinusoids so that there is some cancellation of the
error term.

Figure 4 depicts the MVE for a series of retrievals
in which the signal-to-noise wavelength is varied. Be-
cause of the previous finding, we take R to be relatively
large—40 km. The mean wind U (20 m s21) is selected

to be a value representative of a strong surface outflow,
while a/b (5.0) is chosen such that the error magnitude
is 20% of the signal amplitude. The integration period
t (100 s) employed herein, albeit short, is comparable
to the observed time between consecutive radar volume
scans found in other boundary layer wind retrievals
(e.g., Sun and Crook 1994, 1996; Xu et al. 1994; Shapiro
et al. 1995) of radar data collected in the research mode.
Note the impact of the short wavelength noise on the
MVE as the error grows rapidly for decreasing noise
wavelength and is largest when lm/lx , 1. In contrast,
for lm/lx fixed at 0.5, the MVE is more uniformly dis-
tributed as a function of signal-to-noise (a/b) amplitude
(Fig. 5). Even for a/b ø 1, error levels are only slightly
greater than 50% (recall U 5 20 m s21). The former
figure suggests that large sensitivities exist for short
wavelength noise, while the latter indicates large errors
when b k a.

In Fig. 6 we show the MVE as a function of noise
amplitude b and noise wavenumber m (a 5 10 dBZ,
lx 5 2500 m, t 5 100 s, and R 5 1.0 km are fixed).
It is important to point out that the scheme displays
significant sensitivity to both high amplitude-to-long
wavelength noise and low amplitude-to-short wave-
length noise. This figure also demonstrates that if the
noise amplitude is small (and fixed), changes in the
noise wavelength will not greatly increase the MVE;
conversely, if the noise wavelength is large (and fixed),
changes in the noise amplitude will not significantly
impact the MVE.

We can see this more clearly in Fig. 7, where the
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FIG. 5. Mean flow with error analytic solution to GZ. Contours of
domain MVE as a function of a and b. Here, R is fixed at 40 km,
U 5 20 m s21, lx/lm 5 2.0, and t 5 100 s. Here, m is determined
from Eq. (3). The contour interval is 5 m s21.

FIG. 6. Mean flow with error analytic solution to GZ. Contours of
domain MVE as a function of b and noise wavenumber m. Here, R
is fixed at 1 km, U 5 20 m s21, lx 5 2500 m, a 5 10.0 dBZ, and
t 5 100 s. Here, m is determined from Eq. (3). The contour interval
is 5 m s21.

FIG. 7. Mean flow with error analytic solution to GZ. Each curve
represents the MVE for a series of experiments as a function of b
for varying m of 0.01 (dashed-dotted with circles), 0.005 (short
dashed curve), 0.002 (medium dashed curve), 0.00125 (long dashed
curve), and 0.001 (solid curve with circles). Here, R is fixed at 1 km,
U 5 20 m s21, lx 5 2500 m, a 5 10.0 dBZ, and t 5 100 s. Here,
m is determined from Eq. (3).

MVE for five particular noise wavenumbers is displayed
against the noise amplitude (a 5 10 dBZ, lx 5 2500
m, t 5 100 s, and R 5 1.0 km are fixed). For error
amplitudes approaching 50% of the signal, the errors
are significantly reduced when the wavelength of the
noise is less than that of the signal (m , 0.0025 or lm/
lx , 1). These results suggest that selective filtering of
small-scale noise (relative to the signal wavelength) may
have a significant impact on reducing the error. Radar
data that are collected using a high signal-to-noise
threshold are likely to improve the quality of the re-
trieval. In practice, however, it is difficult to distinguish
between noise and signal, and any attempt to remove
short-wavelength noise invariably removes signal as
well.

Displayed in Fig. 8 is an x–y cross section of the error
in the retrieved y r field. Here, b 5 5.0 dBZ (50% am-
plitude error), lm 5 628.3 m, lx 5 2500 m, R 5 1.0
km, and the weights are computed via (3). The errors
(not shown) in the retrieved u component are near 80%
(16 m s21) over most of the domain with only slight
east-to-west variations due to the sinusoidal nature of
the error term, which is x dependent only. As discussed
above, the large errors are a result of the relatively small
noise wavelength (628 m) compared to that of the signal
(2500 m). While the error in the retrieved mean zonal
flow is distributed evenly in the x–y plane, the mean
meridional wind reveals a systematic error distribution.
Here, we see that the error tends to align itself with the
radar that is located at the origin (0, 0) of the domain
(southwest of the lower left-hand corner).

The largest error occurs due east of the radar (i.e.,
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FIG. 8. Mean flow with error analytic solution to GZ. Horizontal
cross section (at z 5 0 m) of the y component error. Here, R is fixed
at 1 km, U 5 20 m s21, a/b 5 2.0, lx/lm 5 4.0, and t 5 100 s.
Here, m is determined from Eq. (3). The contour interval is 50 m
s21.

FIG. 9. Divergent flow solution to GZ. Horizontal cross section of
the vector field (at z 5 0 m) as determined from Eq. (23). Here, C
5 0.001 s21 and t 5 100 s. Vectors are scaled by a maximum vector
length of 40 m s21.

along the positive x axis) and decreases to the north
and west. Although the ‘‘true’’ y component is zero,
some of the retrieved values are quite large (i.e., in
excess of 200 m s21). As discussed in section 3 for the
error-free mean flow, the solution becomes singular due
to the disappearance of the reflectivity gradient in the
cross-beam (y r) direction, that is, (r 3 =Z ) 5 0. The
retrieval of the cross-beam wind (ur) along x 5 0 does
not produce a singularity because the cross-beam gra-
dient exists (i.e., ]Z/]x ± 0) here. In the case in which
the data are considered to be perfect (error free), the
singularity problem exists at y 5 0 only, and we are
able to retrieve the exact mean flow at all other points
in the domain. Here, the violation of reflectivity con-
servation, (9), due to the introduction of the error term
yields a numerator in (14) that is no longer zero as it
was for the error-free solution. Thus as the denominator
k · (r 3 =Z ) approaches zero (at y 5 0), the solution
grows without bound. Also note that the nature of the
solution indicates that y r grows faster for larger x,
hence explaining the slope of the MVE contours in
Fig. 8.

The results presented here indicate that domainwide
integration of (5) and (6) to retrieve the mean flow can
possibly mitigate the influences of error in the reflec-
tivity field (or errors due to the violation of the reflec-
tivity conservation assumption, e.g., evaporation, con-
densation, precipitation fallout). However, real data is
far more complex than these highly idealized solutions.
Errors will be present in the radial velocity as well as
the reflectivity field, and errors will not be independent

of time as was assumed here. Nevertheless, these results
do shed some valuable insight on the nature of the GZ
scheme. In the next section, we examine a retrieval of
a divergent flow.

5. Retrieval of a divergent flow

We now prescribe the reflectivity field,

Z 5 a sin[kx(1 1 Ct)], (21)

where C has units of frequency and the wavelength of
Z is modulated by time t. Equation (21) exactly satisfies
the conservation equation

]Z ]Z
1 u 5 0, (22)

]t ]x

where

2Cx
u 5 . (23)

1 1 Ct

The zonal velocity is a linear function of x and, for
positive C, decreases from west to east across the do-
main (Fig. 9). Comparing (21) and (7) (where « 5 0)
and recalling that y r is obtained from (23) via y r 5 ux/
r, we see that the coefficients that are a function of either
the x gradient in reflectivity or the radial wind will differ
from those derived for the constant wind solution in
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FIG. 10. Log-linear graph of the divergent flow solution to GZ.
Each curve represents the domain MVE for a series of experiments
as a function of m for varying R of 0.5 km (solid curve), 1.0 km
(dashed curve), 2.5 km (solid curve with circles), and 5.0 km (solid
curve with triangles). Here, lx 5 2500 m, t 5 100 s, a 5 10.0 dBZ,
and C 5 0.001 s21.

FIG. 11. Divergent flow solution to GZ. Each curve represents the
domain MVE as a function of R for varying time integrations of 100
s (solid curve), 500 s (dashed-dotted curve), and 1000 s (dashed
curve). Here, C 5 0.001 s21, and a 5 10.0 dBZ. Here, m is determined
from Eq. (3).

appendix A. By inspection of (5) and (6), this includes
a11, b1, and b2. Substituting the analytic reflectivity field
(21) into the expressions for these three coefficients and
integrating in space and time, we arrive at the divergent
flow solution [see (C1)–(C3) in appendix C for the co-
efficients].

Figure 10 is a log-linear plot of four curves of vary-
ing R for the (error free) divergent flow experiments
as a function of weight and MVE defined by (20). Note
that a perfect (MVE 5 0.0) local flow retrieval implies
that 5 u(x), where u(x) is given by (23), and 5r ru yi,j i,j

0 at each point in the domain. For comparison pur-
poses, the domain is taken to be the same as that spec-
ified for the constant wind retrieval in section 4 with
horizontal dimensions of 40 km 3 40 km and x and y
. 0 with respect to the radar. Here, R varies from 0.5
to 5.0 km, lx (52p /k) 5 2500 m, and t 5 100 s. The
divergent flow, ranging from u 5 0.0 m s21 to u 5
236.4 m s21 from west to east across the domain (see
Fig. 9), was taken to be representative of a strong sur-
face outflow boundary. In direct contrast to the con-
stant wind solution with error, the divergent flow so-
lutions improve (i.e., the MVE decreases) as the weight
m increases. In the absence of error, the reflectivity
conservation equation is essential to a successful local
flow GZ retrieval. As one might expect, radial velocity
information alone is not sufficient to retrieve the local
velocity field (if it were, then, e.g., the projection of
the radial velocity component onto u and y at z 5 0
would be sufficient to retrieve the local flow). It is this

very limitation that has been the impetus for the de-
velopment of SDVR techniques involving reflectivity
and other conservation principles. The divergent flow
solution is quite sensitive to R for 0.01 , m , 1000.
However, weights determined via (3) indicate typical
values on the order of 1500 m2 dBZ 22 or greater. In
practice, weights could be chosen artificially high to
avoid any errors resulting from this sensitivity. In do-
ing so, however, there remains the possibility of some
undesirable side effects that a more thorough analysis
might bring out (e.g., one involving errors in the re-
flectivity).

The sensitivity of the divergent flow solution with
respect to R is shown in Fig. 11. Here we have taken
l x 5 2500 m, a 5 10 dBZ, and C 5 0.001. The three
curves represent time integrations of 100, 500, and
1000 s. For increasing R, we retrieve more of the mean
(i.e., the domain average) flow than the local flow
and, consequently, the MVE increases. The associated
R that produces the smallest MVE values varies in
each of the three cases and is larger (as is the MVE)
for longer integration periods. For perfect data, the
best retrieval is achieved by using observations that
are more closely spaced in time (i.e., when the as-
sumption of velocity stationarity is least violated).
These results also suggest that the choice of an op-
timal R used to retrieve the local flow may depend
upon the time between radar scans. For perfect data
and an evolving flow field, one can compensate
(somewhat) for the loss of temporal resolution, that
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is, an increase in the time between consecutive radar
volume scans, by increasing R.

6. Summary and discussion

The sensitivity of the Gal-Chen and Zhang (1993)
single-Doppler velocity retrieval to both internal and
external parameters was examined. In the first case, we
considered the retrieval with a sinusoidal reflectivity
pattern that is advected by a mean zonal flow. The sec-
ond case is identical to the first except that the reflec-
tivity field is assumed to be contaminated with a si-
nusoidal error term. In the third case the zonal velocity
is a linear function of x. For each case a number of
parameters was systematically varied, including the sig-
nal wavenumber and amplitude and the area of inte-
gration. In addition to these variations, different values
for the noise wavenumber and amplitude were applied
in the second case, while in the third case varying in-
tegration time periods (i.e., time between successive ra-
dar scans) was examined. The findings for these three
cases are summarized below.

1) In the absence of reflectivity or radial velocity errors,
the GZ solution for a constant wind is independent
of the area of integration R, the radar location (x0,
y0), signal wavenumber k, and weight m.

2) In the presence of perfect radial wind information,
any error in the reflectivity field degrades the solu-
tion for the constant wind case. Consequently, the
retrieval performs better without any reflectivity in-
formation.

3) For the constant wind with error and divergent flow
cases, estimates using (3) indicate that the typical
weight is two orders of magnitude greater than values
that would impact the solution, suggesting that the
GZ scheme is relatively insensitive to changes in m.

4) In contrast to the error-free constant wind solution,
the constant wind with error solution is dependent
on R.

5) For given values of a, U, lx, and t, the scheme
displays similar sensitivity to high amplitude-to-long
wavelength noise as it does to low amplitude-to-short
wavelength noise.

6) A reduction in the MVE for the divergent (local)
flow solution occurs as m is increased, indicating the
importance of reflectivity conservation when seeking
the local flow solution.

7) MVE statistics for the local flow solution reveal that
there exists an optimal value of R that depends on
the time between radar scans. The loss in temporal
resolution due to an increase in time between suc-
cessive volume scans can be offset somewhat by
choosing larger values of R.

8) There is an inability to retrieve the mean or local
flow in regions where r 3 =Z 5 0.

9) Of the three test cases, only the divergent-flow so-
lution depends on the radar location (x0, y0).

Although the analyses presented in this paper offer
some insight regarding the sensitivity of the GZ
scheme, real data (or more thorough simulated data
studies) offer a far more robust test of single-Doppler
velocity retrieval. For example, errors in real data are
not necessarily systematic, nor are they generally con-
fined to a single amplitude and wavelength. Heretofore,
the GZ method has been applied, using real data, to
boundary layer phenomena such as the sea breeze and
surface cold pool. In this sense these highly idealized
solutions are similar to their real data counterparts, as
both do not consider the circumstances under which
reflectivity conservation might seriously be violated
(e.g., deep convection). Additionally, the assumption
of velocity stationarity will likely be violated for rap-
idly evolving flow fields, especially if the time between
successive radar volume scans exceeds the timescale
of the local eddies.

It is important to point out that a central tenet of the
GZ scheme is its moving frame formulation (GZ96).
It was hypothesized by Gal-Chen (1982) that the ve-
locity stationarity assumption is least violated in a
frame of reference moving with the principal features
of interest. Because a Doppler radar samples the at-
mosphere at discrete time intervals, finite difference
estimates of time derivatives based on these measure-
ments are prone to aliasing. By defining an appropriate
moving reference frame, (e.g., one that minimizes the
time tendency of reflectivity), one can minimize the
impact of errors that result from aliasing. With respect
to the cases presented here, the reflectivity time ten-
dency is known perfectly, hence the solutions are pre-
sented for a fixed frame only. However, as shown for
the divergent flow solution, the velocity stationarity
assumption is violated for an evolving flow field.
Therefore, extending the study to include a moving
frame solution would serve to identify and quantify
the sensitivity of GZ to rapidly evolving flow fields as
well as detail the advantages of a moving reference
frame retrieval under these circumstances.
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APPENDIX A

Mean Flow Coefficients

The mean flow coefficients are given as follows:

2 2t y1R x1R ]Z x* 2 x0a 5 m 1 dx* dy* dt*11 E E E 5 1 2 1 2 6]x* r0 y2R x2R

R
2 2 2 25 2ma k R t 2 ma sin(2kR){sin[2k(x 2 Ut)] 2 sin(2kx)}

2U

t x 1 R x 2 R x 1 R x 2 R
2 2 21 21 2 21 211 4R t 2 (y 1 R) tan 2 tan 2 (y 2 R) tan 2 tan5 1 2 1 2 1 2 1 2 6[ ] [ ]2 y 1 R y 1 R y 2 R y 2 R

t y 2 R y 1 R
21 212 (x 1 R) 2R 1 (x 1 R) tan 2 tan5 1 2 1 2 6[ ]2 x 1 R x 1 R

t y 2 R y 1 R
21 211 (x 2 R) 2R 1 (x 2 R) tan 2 tan . (A1)5 1 2 1 2 6[ ]2 x 2 R x 2 R

t y1R x1R (x* 2 x )(y* 2 y )0 0a 5 dx* dy* dt*12 E E E 2r0 y2R x2R

2 2 2 2t (y 1 R) 1 (x 1 R) (y 1 R) 1 (x 1 R)
2 25 (y 1 R) log 1 (x 1 R) log

2 2 2 25 [ ] [ ]4 (y 1 R) 1 (x 2 R) (y 2 R) 1 (x 1 R)

2 2 2 2(y 2 R) 1 (x 2 R) (y 2 R) 1 (x 2 R)
2 21 (y 2 R) log 1 (x 2 R) log . (A2)

2 2 2 2 6[ ] [ ](y 2 R) 1 (x 1 R) (y 1 R) 1 (x 2 R)

2t y1R x1R y* 2 y0a 5 dx* dy* dt*22 E E E 1 2r0 y2R x2R

t x 1 R x 2 R x 1 R x 2 R
2 21 21 2 21 215 (y 1 R) tan 2 tan 2 (y 2 R) tan 2 tan5 1 2 1 2 1 2 1 2 6[ ] [ ]2 y 1 R y 1 R y 2 R y 2 R

t y 2 R y 1 R
21 211 (x 1 R) 2R 1 (x 1 R) tan 2 tan5 1 2 1 2 6[ ]2 x 1 R x 1 R

t y 2 R y 1 R
21 212 (x 2 R) 2R 1 (x 2 R) tan 2 tan . (A3)5 1 2 1 2 6[ ]2 x 2 R x 2 R

a 5 a 5 0 a 5 a , a 5 a 5 0, and a 5 0. (A4)13 31 21 12 23 32 33

t y1R x1R ]Z ]Z x* 2 x0b 5 2m 1 y dx* dy* dt* 5 U 3 a . (A5)1 E E E r 111 2]x* ]t* r0 y2R x2R

t y1R x1R ]Z ]Z y* 2 y0b 5 2m 1 y dx* dy* dt* 5 U 3 a . (A6)2 E E E r 121 2]y* ]t* r0 y2R x2R

An asterisk indicates a dummy variable; r, R, and (x0, y0) are given in Fig. 1; and y r 5 U(x 2 x0/r).

APPENDIX B

Mean Flow Error Coefficients

The following two terms are added onto Eqs. (A1) and (A5), respectively. All other coefficients remain the
same as defined in appendix A.
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2t y1R x1R ]« ]Z ]«
« 5 m 2 1 dx* dy* dt*a E E E11 ) 1 2[ ]]x* ]x* ]x*0 y2R x2R «50

2mRtb m
2 2 25 2mR b m t 1 {sin[2m(x 1 R)] 2 sin[2m(x 2 R)]}

2

2mabmR
1 sin(kUt){sin[(m 1 k)(x 1 R)] 2 sin[(m 1 k)(x 2 R)]}

(m 1 k)U

2mabmR
1 sin(kUt){sin[(m 2 k)(x 1 R)] 2 sin[(m 2 k)(x 2 R)]}

(m 2 k)U

2mabmR
1 [cos(kUt) 2 1]{cos[(m 1 k)(x 1 R)] 2 cos[(m 1 k)(x 2 R)]}

(m 1 k)U

2mabmR
1 [cos(kUt) 2 1]{cos[(k 2 m)(x 1 R)] 2 cos[(k 2 m)(x 2 R)]}. (B1)

(k 2 m)U

t y1R x1R ]Z ]«
« 5 2m dx* dy* dt*b E E E1 ]t* ]x*0 y2R x2R

mabmR
5 sin(kUt){sin[(m 1 k)(x 1 R)] 2 sin[(m 1 k)(x 2 R)]}

(m 1 k)

mabmR
1 sin(kUt){sin[(m 2 k)(x 1 R)] 2 sin[(m 2 k)(x 2 R)]}

(m 2 k)

mabmR
1 [cos(kUt) 2 1]{cos[(m 1 k)(x 1 R)] 2 cos[(m 1 k)(x 2 R)]}

(m 1 k)

mabmR
1 [cos(kUt) 2 1]{cos[(k 2 m)(x 1 R)] 2 cos[(k 2 m)(x 2 R)]}. (B2)

(k 2 m)

APPENDIX C

Divergent Flow Coefficients

Here, a11(Z), shown below, denotes the solution associated with the portion of a11 integrand given by the ]Z/
]x term and, when substituted in place of the first two terms on the right-hand side of (A1), yields the divergent
flow a11.

t y1R x1R ]Z
a (Z ) 5 m dx* dy* dt*11 E E E 1 2]x*0 y2R x2R

R
25 ma {cos[2k(x 1 R)] 2 (1 1 Ct) cos[2k(x 1 R)(1 1 Ct)]}

4C(x 1 R)

R
21 ma {(1 1 Ct) cos[2k(x 2 R)(1 1 Ct)] 2 cos[2k(x 2 R)]}

4C(x 2 R)

R
21 ma {sin[2k(x 1 R)(1 1 Ct)] 2 sin[2k(x 1 R)]}

28Ck(x 1 R)
2 2 2R 2ma k R

2 31 ma {sin[2k(x 2 R)] 2 sin[2k(x 2 R)(1 1 Ct)]} 1 [(1 1 Ct) 2 1]. (C1)
28Ck(x 2 R) 3C

All other coefficients are given in appendix A, with the exception of the following:
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t y1R x1R ]z ]z x* 2 x0b 5 2m 1 y dx* dy* dt*1 E E E r1 2]x* ]t* r0 y2R x2R

t y1R x1R 2C(x* 2 x ) x*02 2 25 ma k Cx* cos [kx*(1 1 Ct*)] 2 dx* dy* dt*E E E 25 6r (1 1 Ct*)0 y2R x2R

2 2 2 2 25 ma R xk [1 2 (1 1 Ct) ] 2 4R (x 1 x ) log(1 1 Ct)0

2ma R
1 {cos[2k(x 1 R)(1 1 Ct)] 2 cos[2k(x 1 R)] 2 cos[2k(x 2 R)(1 1 Ct)] 1 cos[2k(x 2 R)]}

4

2[2k(x 1 R)(1 1 Ct)]
3 log|2k(x 1 R)(1 1 Ct)| 2 log|2k(x 1 R)| 25 2(2!)

2 4 4[2k(x 1 R)] [2k(x 1 R)(1 1 Ct)] [2k(x 1 R)]
1 1 2 1 HOT62(2!) 4(4!) 4(4!)

2 2ma R [2k(x 2 R)(1 1 Ct)]
1 log|2k(x 2 R)(1 1 Ct)| 2 log|2k(x 2 R)| 254 2(2!)

2 4 4[2k(x 2 R)] [2k(x 2 R)(1 1 Ct)] [2k(x 2 R)]
1 1 2 1 HOT62(2!) 4(4!) 4(4!)

2 2 2 2log(1 1 Ct) (y 1 R) 1 (x 1 R) (y 2 R) 1 (x 2 R)
2 3 31 16xR 1 (y 1 R) log 1 (y 2 R) log

2 2 2 25 [ ] [ ]6 (y 1 R) 1 (x 2 R) (y 2 R) 1 (x 1 R)

y 2 R y 1 R y 2 R y 1 R
3 21 21 3 21 211 2(x 1 R) tan 2 tan 2 2(x 2 R) tan 2 tan1 2 1 2 1 2 1 2 6[ ] [ ]x 1 R x 1 R x 2 R x 2 R

x x 1 R x 2 R x 1 R x 2 R0 2 2 21 21 2 21 211 log(1 1 Ct) 4R 1 (y 1 R) tan 2 tan 2 (y 2 R) tan 1 tan5 1 2 1 2 1 2 1 2[ ] [ ]2 y 1 R y 1 R y 2 R y 2 R

y 1 R y 2 R y 1 R y 2 R
2 21 21 2 21 212 (x 1 R) tan 2 tan 1 (x 2 R) tan 2 tan ,1 2 1 2 1 2 1 2 6[ ] [ ]x 1 R x 1 R x 2 R x 2 R

(C2)
where ‘‘HOT’’ is the higher-order terms of the series expansion and

t y1R x1R t y1R x1Ry* 2 y C(x* 2 x )(y* 2 y )x*0 0 0b 5 y dx* dy* dt* 5 2 dx* dy* dt*2 E E E r E E E 2r r (1 1 Ct*)0 y2R x2R 0 y2R x2R

1 x 1 R x 1 R
2 3 21 3 215 log(1 1 Ct) 24yR 1 (y 1 R) tan 2 (y 2 R) tan1 2 1 2[1 3 y 1 R y 2 R

x 2 R x 2 R
3 21 3 212 (y 1 R) tan 2 (y 2 R) tan1 2 1 2]y 1 R y 2 R

2 2(x 1 R) (y 2 R) 1 (x 1 R)
21 4Ry 1 (x 1 R) log

2 25 6[ ]6 (y 1 R) 1 (x 1 R)

2 2(x 2 R) (y 2 R) 1 (x 2 R)
22 4Ry 1 (x 2 R) log

2 25 6[ ]6 (y 1 R) 1 (x 2 R)
2 2 2 2x (x 1 R) 1 (y 2 R) x (x 2 R) 1 (y 1 R)0 02 21 (x 1 R) log 1 (y 1 R) log
2 2 2 2[ ] [ ]4 (x 1 R) 1 (y 1 R) 4 (x 1 R) 1 (y 1 R)

2 2 2 2x (x 1 R) 1 (y 2 R) x (x 2 R) 1 (y 1 R)0 02 21 (y 2 R) log 1 (x 2 R) log . (C3)
2 2 2 2[ ] [ ]24 (x 2 R) 1 (y 2 R) 4 (x 2 R) 1 (y 2 R)
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