Fall’2016 Semester
METR 3113 — Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics

Lecture 16. September 30, 2016

Topics: Summary of differential vector operations in Cartesian coordinates on a plane. Polar-coordinate forms

of differential vector operators. Relation between directional differential and gradient in polar

coordinates.

Reading: Appendix C of Holton and Hakim, sections 3 and 10 of Fiedler.

1.

Summary of differential vector operations in Cartesian coordinates on a plane

Of all vector differential operators discussed in Classes 13 to 15, we will focus on the following ones

considered in 2-D Cartesian coordinates, that is on the (X, Y) plane.

1.

. Divergence of a 2-D vector field V=V(x,y): V-V=—2+

Gradient of a 2-D scalar field p=p(x,y): Vp= ig—p+j2y—p (we may conventionally assume p to be the
X

atmospheric pressure).
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V to be a horizontal wind velocity vector).
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. Curl of 2-D vector field V=V(x,y): Vszk(@—y—%jzk(@—%} It is often presented in
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coordinate-projection form as k~(VxV):?—8—u. If V is a horizontal velocity vector, then
X
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o =k-o=2_% s the vertical component of vorticity vector @=VxV or, simply, vertical
oy

vorticity.
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. Laplacian (Laplace operator) of a 2-D scalar field p= p(x,y): VzpsV-Vp:W+—zsAp (we may

again conventionally assume p to be pressure).

. Polar-coordinate forms of vector operations
. Polar-coordinate form of the p gradient, Vp, was obtained in Class 16:

Vp:@f‘+£@é.
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. Divergence in polar coordinates is given by
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where v, and v, are, respectively, r and & components of V, with x, y, and r, & related through
X=rcosd and y=rsiné.

To obtain this expression, use

vV, =ucosé+vsing,

Vv, =—-usind+vcos@,
to get

u=v,cosé—-v,siné,

v=V,sinfd+v,cosd.

Differentiate u partially with respect to x to get
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X=rcosd, y=rsiné,
together with
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Differentiate v partially with respect to y,
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Finally, bring a and il together to get
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. Vertical (z) component of the curl of a 2-D horizontal vector field V is given in cylindrical coordinates
(r, 0, z) by

k- (VxV)==—-2%&_= ,
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where v, and v, are, respectively, r and & components of V.
To derive this expression, write vertical component of the curl in 2-D Cartesian coordinates as (see p.
1.3):

k-VxV:@—a—u
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and proceed using
u=v,cosé-v,sind, v=v,sinf+v,cosé,

or 00 sin@ or . 060 cosf@
—=C080, —=———, —=5SIN0, — =——,
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analogously to p. 2.2 above (case of divergence) to express Z—V and Z—u through v,, v,, r, and &. Then
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subtract au from il to get
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. Laplace operator (Laplacian) of a differentiable scalar field ¢ in polar coordinates on a plane is given by
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To obtain this expression, start from its 2-D Cartesian counterpart:
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Differentiate ¢ with respect to x to get
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Then differentiate the obtained expression to get
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Relating polar coordinates r and @ to the plane Cartesian coordinates x and y through

X=rcosé, y=rsing, r=x*+y?, @=arctan(y/x),
we find

O X _esp 20___ Y _sing o y* sin’d
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and arrive at
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Analogously, one can obtain the following expression for the second derivative of ¢ with respect to y:
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Summing up the above expressions, we come up with
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3. Relation between directional differential and gradient in polar coordinates
In Class 13 we considered a displacement vector dm in Cartesian space and obtained the following expression
for the directional differential dT of the scalar variable T due to the displacement dm (we look here at the 2-D

version of that expression):
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where dm = dxi +dyj is the displacement vector expressed in the Cartesian coordinate form.

Now consider the displacement vector dm in 2-D polar coordinates (r, € ) related to Cartesian coordinates
through

X=rcosd and y=rsing.

In the (r, @) coordinates, the decomposition of dm is presented by



dm:dr:d(rf):drf+rdf:dr?+r:—;d0:dr?+rdeé,
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where we used :—; =0, see Class 16.

Assuming that expression for differential dT = VT -dm holds in polar coordinates, we may write

dT :E;—Tdr+2—gd0:VT -dm = (VT,#+VT,0)-(dr + rd69),
.

or, using rules of evaluation of the dot product,

a—Tdr +a—Td¢9 =VT.dr+VT,dé,
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from which we conclude that

aT_ VT, and a._ rvT,.
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Therefore, components VT, and VT, of the gradient VT in polar coordinates are

VT, _ar and VT, :lﬁ
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and the gradient may be written as

VT :8—Tf‘+la—Té.
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This is the same expression that was already obtained, albeit in a different way, in Class16:



