
Fall’2016 Semester 
METR 3113 – Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics 

Lecture 16. September 30, 2016 

Topics: Summary of differential vector operations in Cartesian coordinates on a plane. Polar-coordinate forms 

of differential vector operators. Relation between directional differential and gradient in polar 

coordinates. 

Reading: Appendix C of Holton and Hakim, sections 3 and 10 of Fiedler. 

1. Summary of differential vector operations in Cartesian coordinates on a plane 

Of all vector differential operators discussed in Classes 13 to 15, we will focus on the following ones 

considered in 2-D Cartesian coordinates, that is on the (X, Y) plane. 

1. Gradient of a 2-D scalar field ( , )p p x y : 
p p

p
x y

 
  

 
i j  (we may conventionally assume p to be the 

atmospheric pressure). 

2. Divergence of a 2-D vector field ( , )x yV V : 
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vv u v

x y x y

  
    

   
V  (we may conventionally assume 

V  to be a horizontal wind velocity vector). 

3. Curl of 2-D vector field ( , )x yV V : 
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V k k . It is often presented in 

coordinate-projection form as ( )
v u

x y

 
   

 
k V . If V  is a horizontal velocity vector, then 
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k ω  is the vertical component of vorticity vector ω V  or, simply, vertical 

vorticity. 

4. Laplacian (Laplace operator) of a 2-D scalar field ( , )p p x y : 
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(we may 

again conventionally assume p to be pressure). 

2. Polar-coordinate forms of vector operations 

1. Polar-coordinate form of the p gradient, p , was obtained in Class 16: 
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2. Divergence in polar coordinates is given by 
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V , 



where 
rv  and v  are, respectively, r  and   components of V , with x, y, and r ,   related through 

cosx r   and siny r  . 

To obtain this expression, use 

cos sinrv u v   , 

sin cosv u v     , 

to get 

cos sinru v v   , 

sin cosrv v v   . 

Differentiate u partially with respect to x to get 
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, 

and use 

cos ,  sinx r y r   , 

together with 
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to obtain 
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Differentiate v partially with respect to y, 
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and use 
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to obtain 

cos
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Finally, bring 
u

x




 and 

v

y




 together to get 
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V . 

3. Vertical (z) component of the curl of a 2-D horizontal vector field V  is given in cylindrical coordinates 

( ,  ,  r z ) by 
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k V , 

where rv  and v  are, respectively, r  and   components of V . 

To derive this expression, write vertical component of the curl in 2-D Cartesian coordinates as (see p. 

1.3): 
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and proceed using 

cos sinru v v   , sin cosrv v v   , 
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analogously to p. 2.2 above (case of divergence) to express 
v
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 and 

u
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 through ,  ,  ,  and rv v r  . Then 

subtract 
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v
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 to get 
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4.  Laplace operator (Laplacian) of a differentiable scalar field   in polar coordinates on a plane is given by 
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To obtain this expression, start from its 2-D Cartesian counterpart: 
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Differentiate   with respect to x to get 
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Then differentiate the obtained expression to get 
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Relating polar coordinates r and θ to the plane Cartesian coordinates x and y through 

cosx r  , siny r  , 2 2r x y  , arctan( / )y x  , 

we find 
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and arrive at 
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Analogously, one can obtain the following expression for the second derivative of   with respect to y: 
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Summing up the above expressions, we come up with 
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3. Relation between directional differential and gradient in polar coordinates 

In Class 13 we considered a displacement vector dm  in Cartesian space and obtained the following expression 

for the directional differential dT of the scalar variable T due to the displacement dm  (we look here at the 2-D 

version of that expression): 

 
T T T T

dT dx dy T d dx dy
x y x y

    
         

    
i j i j m , 

where d dx dy m i j  is the displacement vector expressed in the Cartesian coordinate form. 

Now consider the displacement vector dm  in 2-D polar coordinates (r,  ) related to Cartesian coordinates 

through 

 cos   and  sinx r y r   . 

In the (r,  ) coordinates, the decomposition of dm  is presented by 
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where we used 
ˆ ˆd

d


r
θ , see Class 16. 

Assuming that expression for differential dT T d  m  holds in polar coordinates, we may write 
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or, using rules of evaluation of the dot product, 
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from which we conclude that 
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Therefore, components rT  and T  of the gradient T  in polar coordinates are 
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and the gradient may be written as 
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This is the same expression that was already obtained, albeit in a different way, in Class16: 


